Schattenblick → INFOPOOL → NATURWISSENSCHAFTEN → GEOWISSENSCHAFTEN


FORSCHUNG/352: Magnetwirbel trotzen Temperaturschwankungen (idw)


Forschungszentrum Jülich - 18.04.2016

Magnetwirbel trotzen Temperaturschwankungen

Verbreitetes Magnetgestein ist zuverlässiger Zeuge der Erdgeschichte


Magnetische Nanowirbel in Magnetit-Mineralien sind zuverlässige Zeugen der Erdgeschichte. Dies zeigen die ersten hochauflösenden Untersuchungen solcher Strukturen durch ein deutsch-britisches Forscherteam. Die Magnetstrukturen entstehen beim Erkalten von Gesteinsschmelzen und sind ein Abbild des Erdmagnetfelds zum Zeitpunkt ihrer Entstehung. Die Wirbel sind unerwartet robust gegenüber Temperaturschwankungen, wie die elektronenholographischen Experimente in Jülich belegen. Die Ergebnisse sind ein wichtiger Schritt, um die Geschichte unseres Erdmagnetfelds, des Erdinneren und der Plattentektonik besser zu verstehen.
(Science Advances, DOI: 10.1126/sciadv.1501801)


Quelle: Imperial College London

Elektronenmikroskopische Aufnahme eines Magnetit-Nanokristalls (links) und die magnetische Wirbelstruktur (rechts), erstmals mittels Elektronenholographie sichtbar gemacht.
Quelle: Imperial College London


Das Magnetfeld der Erde erfüllt wichtige Zwecke: Es schützt uns zum Beispiel vor geladenen Teilchen aus dem Weltall und ermöglicht Zugvögeln, Bienen und anderen Tieren die Orientierung. Doch es ist nicht stabil, sondern ändert fortwährend seine Stärke und seine Lage. Mehrmals hat es sich in der Vergangenheit sogar umgepolt - Nord- und Südpol haben ihren Platz getauscht. Wissenschaftler des Arbeitsbereichs Paläomagnetismus untersuchen mit Hilfe magnetischer Mineralien die Geschichte des Erdmagnetfelds und dessen Entstehung durch flüssige Metallströme im Erdinneren, den so genannten Geodynamo. Auch die Bewegungen der Kontinentalplatten lassen sich mit Hilfe solcher Gesteine nachverfolgen.

Im Laufe von Millionen von Jahren können die Mineralien starken Temperaturschwankungen ausgesetzt sein, etwa durch extreme Klimaänderungen oder vulkanische Aktivitäten. Wie gut überstehen die Magnetstrukturen solche Temperaturschwankungen und wie zuverlässig sind die aus ihnen gewonnenen Informationen? Dies hat ein internationales Forscherteam nun erstmals ultrahochaufgelöst an Proben von Magnetit untersucht, dem Mineral, das die magnetischen Eigenschaften in der Erdkruste dominiert. "Nur in einem kleinen Teil des natürlich vorkommenden Magnetits finden sich Magnetstrukturen, die als sehr stabil gegenüber Temperaturschwankungen bekannt sind", erläutert Dr. Trevor Almeida vom Imperial College London. "Weitaus verbreiteter sind winzige Magnetwirbel. Deren Stabilität war bisher nicht bewiesen."

Mit Kollegen des Forschungszentrums Jülich, der Universität von Edinburgh und der Universität von Nottingham hat Almeida solche Magnetwirbel in Magnetit-Nanokristallen untersucht. Weil die Strukturen so winzig sind - jedes der Körnchen ist nur ungefähr so groß wie ein Virus - gibt es nur eine Methode, mit der sich die Nanowirbel beim Erhitzen und Abkühlen direkt beobachten lassen: "Ein spezielles hochauflösendes Elektronenmikroskop am Ernst Ruska-Centrum (ER-C) in Jülich ist in der Lage, nanoskalige magnetische Felder holographisch sichtbar zu machen", erläutert Almeida. "Dabei entstehen Bilder von Feldlinien, fast so, wie wenn man das Magnetfeld eines Stabmagneten mit Hilfe von Metallspänen sichtbar macht, aber mit einer Auflösung im Nanometerbereich."


Quelle: Universität Edinburgh

Dieses mikromagnetische Modell zeigt die dreidimensionale Wirbelstruktur des Magnetit- Nanokristalls.
Quelle: Universität Edinburgh

Die Experimente in Jülich zeigten, dass die Magnetwirbel zwar beim Erhitzen ihre Stärke und Richtung ändern, aber beim Abkühlen wieder den Ausgangszustand einnehmen. "Somit ist auch Magnetitgestein, das Anzeichen für Temperaturschwankungen aufweist, tatsächlich eine sehr zuverlässige Quelle für Daten zur Erdgeschichte", freut sich Almeida.

"Die Elektronenholographie hat einen völlig neuen Einblick in das magnetische Verhalten von Magnetit ermöglicht", betont Prof. Dr. Rafal Dunin-Borkowski, Direktor am ER-C und am Jülicher Peter Grünberg Institut. Der Experte für Elektronenholographie arbeitet mit seinem Jülicher Team daran, das Auflösungsvermögen dieser Technik noch weiter zu verbessern und die notwendige Infrastruktur für solche Untersuchungen für deutsche und internationale Wissenschaftler bereit zu stellen. "Schwache magnetische Felder in Nanokristallen spielen nicht nur im Paläomagnetismus eine Rolle. In der Informationstechnologie etwa kann die Elektronenholographie ebenfalls von Nutzen sein und helfen, die physikalischen Grenzen der Datenspeicherung und -verarbeitung auszureizen."

Originalveröffentlichung:
T. P. Almeida, A. R. Muxworthy, A. Kovács, W. Williams, P. D. Brown, R. E. Dunin-Borkowski,
Direct visualization of the thermomagnetic behavior of pseudo-single-domain magnetite particles.
Science Advances 15 Apr 2016: Vol. 2, No. 4, e1501801,
DOI: 10.1126/sciadv.1501801.


Weitere Informationen unter:
http://www.fz-juelich.de
- Forschungszentrum Jülich

http://www.er-c.org/
- Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen (ER-C)

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution50

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Forschungszentrum Jülich, Dipl.-Biologin Annette Stettien, 18.04.2016
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 21. April 2016

Zur Tagesausgabe / Zum Seitenanfang