Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → PHYSIK

FORSCHUNG/869: Jupiters "Trojaner" im Atom-Format (idw)


Technische Universität Wien - 25.01.2012

Jupiters "Trojaner" im Atom-Format

Berechnungen der TU Wien erfolgreich im Experiment umgesetzt: Ähnlich wie der Planet Jupiter Asteroiden auf stabilen Bahnen hält, lassen sich Elektronen in Kalium-Atomen durch elektromagnetische Felder stabilisieren.

© TU Wien

Das Bohrsche Atommodell geht von Atomen aus, die ähnlich wie ein
Planet um den Atomkern kreisen. Durch technische Tricks wird das
Elektron (grün) über lange Zeit zusammengehalten, ohne sich über die
ganze Kreisbahn zu verteilen.
© TU Wien

Milliarden Jahre können Planeten und Asteroiden regelmäßig rund um die Sonne kreisen. Auch Elektronen, die sich rund um einen Atomkern bewegen, stellt man sich gerne wie Planeten im Mini-Format vor. In Wirklichkeit verhalten sich Atome aufgrund quantenphysikalischer Effekte aber doch ganz anders als Planetensysteme. Nun ist es einem US-amerikanisch-österreichischen Forschungsteam gelungen, Elektronen in Atomen lange Zeit stabil auf planetenartigen Bahnen kreisen zu lassen. Den entscheidenden Trick dafür hat man sich vom Jupiter abgeschaut: Er stabilisiert die Bahnen von Asteroiden - den sogenannten "Trojanern" - und auf ganz ähnliche Weise konnten nun Elektronen-Bahnen rund um den Atomkern durch ein elektromagnetisches Feld stabilisiert werden. Die Forschungsergebnisse wurden nun im Fachjournal "Physical Review Letters" publiziert.


Riesen-Atome

Es sind die wohl größten Atome der Erde: "Einen Hundertstel Millimeter beträgt der Durchmesser der Elektronenbahnen - für atomare Verhältnisse eine gewaltige Distanz", erklärt Shuhei Yoshida. Die Atome sind damit größer als rote Blutkörperchen. Yoshida führte am Institut für Theoretische Physik der TU Wien die Berechnungen durch, an der Rice University in Houston (Texas) wurden die Ideen experimentell umgesetzt.


Ein Elektron ist kein Planet

Die Vorstellung, dass Atome und Planetensysteme einiges gemeinsam haben, ist nicht neu: Schon das erste Atommodell von Niels Bohr ging von Elektronen aus, die sich auf festen Bahnen rund um einen Atomkern bewegen. Dieses Bild gilt aber längst als veraltet. Quantenmechanisch wird das Elektron Quanten-Welle oder als "Wahrscheinlichkeitswolke" beschrieben, die den Atomkern umgibt. Ein Elektron im niedrigsten Energiezustand befindet sich gleichzeitig in allen möglichen Richtungen rund um den Kern - von einem genauen Aufenthaltsort oder einer echten Umlaufbahn kann hier keine Rede sein. Erst wenn man das Elektron auf ein höheres Energie-Niveau anhebt, lässt es sich so präparieren, dass es planetenartigen Bahnen folgt.


Jupiters Trick - auf Atome angewandt

Im Gegensatz zu Planeten bewegen sich die Elektronen aber nicht dauerhaft so weiter: "Ohne zusätzliche Stabilisierung würde sich die Elektronen-Welle schon nach wenigen Umläufen wieder gleichmäßig entlang der Bahn verteilen und hätte keine feste Position mehr", sagt Prof. Burgdörfer, Vorstand des Instituts für Theoretische Physik. Eine mögliche Stabilisierung solcher Bahnen kennt man aus der Astronomie schon lange: Jupiter, der schwerste Planet unseres Sonnensystems, stabilisiert durch seine Anziehungskraft die Bahnen der "Trojaner" - das sind tausende kleine Asteroiden, die sich mit Jupiter eine Bahn um die Sonne teilen. Auf den so genannten "Lagrange-Punkten" werden sie festgehalten, und entlang dieser Bahn bewegen sie sich mit Jupiter mit - genau mit der selben Umlaufgeschwindigkeit wie Jupiter selbst, sodass sie nie mit dem Planeten kollidieren.

Im Atom-Experiment wird diese stabilisierende Wirkung des Jupiters durch ein raffiniert gewähltes elektromagnetisches Feld ersetzt: Das Feld oszilliert genau in der Frequenz, die der Umlaufdauer des Elektrons um den Kern entspricht - es gibt dem Elektron also den richtigen Takt vor und hält die Quanten-Welle des Elektrons viele Umdrehungen lang in einem engen Bereich lokalisiert. Am Atom lassen sich sogar Manipulationen durchführen, die im Planetensystem nicht möglich wären: Das Elektron kann gezielt in eine andere Umlaufbahn überführt werden - so als würde man den Jupiter samt der Asteroiden auf die Saturn-Bahn schieben.


Das Kleine und das Große

Damit ist es gelungen, astronomische Gegebenheiten in einer quantenphysikalischen Miniatur-Version nachzubauen und Atome zu erzeugen, die dem historischen Bohrschen Atommodell erstaunlich nahe kommen. In Zukunft will das internationale Forschungsteam Atome präparieren, in denen sich gleich mehrere Elektronen auf planetenartigen Bahnen bewegen. Mit solchen Atomen soll es möglich sein, genauer zu erforschen, wie die Quanten-Welt der winzig kleinen Objekte mit der klassischen Welt unserer Alltagserfahrung zusammenhängt.

Weitere Informationen unter:
http://link.aps.org/doi/10.1103/PhysRevLett.108.043001
- Originalpublikation

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution88


*


Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Technische Universität Wien, Dr. Florian Aigner, 25.01.2012
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 27. Januar 2012