Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → TECHNIK

WERKSTOFFE/551: Lichtblitz bricht den elektrischen Widerstand (MPG)


Max-Planck-Gesellschaft - 13. Januar 2011

Lichtblitz bricht den elektrischen Widerstand

Infrarote Laser-Pulse verwandeln eine Kupferoxid-Keramik in einen Supraleiter - und eröffnen eine neue Weg, solche Materialien in die breite Anwendung zu bringen


Ein Isolator lässt sich durch einen Laserblitz in einen Supraleiter verwandeln, wie Forscher der Max-Planck-Forschungsgruppe für Strukturelle Dynamik an der Universität Hamburg festgestellt haben. Die bestrahlte Keramik leitete bei dem Experiment der Physiker um Andrea Cavalleri den Strom auch noch für kurze Zeit verlustfrei, nachdem das Laserlicht abgeklungen war. Überrascht zeigen sich die Forscher um Cavalleri außerdem von der Schnelligkeit, mit der sich der supraleitende Zustand erzeugen ließ. Die Beobachtungen liefern einen Beitrag zum Verständnis von so genannten Hochtemperatur-Supraleitern, einer Klasse von Supraleitern, die eines Tages Strom bei Raumtemperatur verlustfrei leiten könnte und von der Experten daher ein großes Anwendungspotenzial erwarten. (Science 14. Januar 2011)

Blitzartig ohne Widerstand: Die Kupferoxid-Keramik Lesco<sub>1/8</sub>wird supraleitend, wenn sie mit Laser-Pulsen bestrahlt wird. - © Joerg M. Harms, Max Planck Department for Structural Dynamics - Hamburg

Blitzartig ohne Widerstand: Die Kupferoxid-Keramik Lesco1/8 wird supraleitend, wenn sie mit Laser-Pulsen bestrahlt wird. Zu erkennen sind die Streifen abwechselnd nach rechts und links verkippter Strukturelemente und Ordnung der Elektronenspins (violette Pfeile). Der Laserpuls glättet die Struktur der Keramik, so dass diese einen supraleitenden Zustand annimmt. Dass diese Zustandsänderung sehr schnell erfolgt, gibt Physikern Hinweise darauf, wie die technisch interessanten Kupferoxid-Keramiken den elektrischen Widerstand verlieren.
© Joerg M. Harms, Max Planck Department for Structural Dynamics - Hamburg

Ein Kabelnetz, das Strom verlustfrei leitet, oder superschnelle und gleichzeitig energieeffiziente Magnetschwebebahnen diese Träume könnten mit Hilfe so genannter Hochtemperatur-Supraleiter in Zukunft Realität werden. Diese Art von Supraleitern meist handelt es sich um Kupferoxid-Keramiken leiten Strom bei vergleichsweise hohen Temperaturen verlustfrei. Während supraleitende Metalle ihren elektrischen Widerstand erst verlieren, wenn sie auf wenige Grad über den absoluten Temperaturnullpunkt bei etwa minus 273 Grad Celsius gekühlt werden, nehmen manche Hochtemperatur-Supraleiter den supraleitenden Zustand schon bei einer kritischen Temperatur von etwa minus 100 Grad Celsius an. Dieses Verhalten hängt eng mit dem schichtartigen Aufbau der Materialien zusammen, der an einen Stapel Papier erinnert.

Forscher wollen neue Keramiken entwickeln, die sogar bei Raumtemperatur supraleitende Eigenschaften annehmen und den erstaunlichen physikalischen Effekt so aus den Labors in den Alltag bringen. Doch sie verstehen noch nicht vollständig, warum Hochtemperatur-Supraleiter überhaupt supraleitend werden, was die Suche nach einem alltagstauglichen Supraleiter erschwert. Die Erkenntnisse der Hamburger Max-Planck-Forschungsgruppe um Andrea Cavalleri könnten helfen, das zu ändern.

Die Hamburger Forscher verwendeten für ihre Experimente eine Art von Kupferoxidkristall, bei der sich zwischen den Kupferoxid-Schichten Atome der Elemente Lanthan, Europium und Strontium befinden. Normalerweise hängt die kritische Temperatur dieser Keramiken vom Konzentrationsverhältnis der Elemente Lanthan und Strontium ab. Bei einem bestimmten Konzentrationsverhältnis, nämlich bei der Verbindung La1.675Eu0.2Sr0.125CuO4, kurz Lesco1/8, tritt jedoch selbst bis zu tiefsten Temperaturen keine Supraleitung auf.

Dies hängt vermutlich mit einer Besonderheit im Kristallaufbau von Lesco1/8 zusammen, welche Forscher gestreifte Ordnung nennen: Die Oktaeder, aus denen sich die Schichten von Kupferoxid-Keramiken zusammensetzen, stehen in Lesco1/8 nicht parallel nebeneinander wie in gewöhnlichen Kupferoxid-Keramiken. Vielmehr sind sie so gegeneinander verkippt, dass eine Schicht eher an Wellpappe erinnert als an Papier. Damit ist auch eine gestreifte Ordnung der elektrischen Ladung und der magnetischen Momente (Spins) verbunden. Die gestreifte Ordnung verhindert, so die Annahme von theoretischen Physikern, dass unterhalb der kritischen Temperatur Strom zwischen den einzelnen Schichten fließen kann.

Die Hamburger Forscher haben nun, in Zusammenarbeit mit Wissenschaftlern aus England und Japan, einen Puls aus infrarotem Laserlicht auf einen Lesco1/8-Kristall gesendet, den sie zuvor auf minus 263 Grad Celsius abgekühlt hatten. Der Laserpuls dauerte einige Femtosekunden, eine Zeit, in der Licht weniger als einen Tausendstel Millimeter zurücklegt. Unmittelbar danach haben die Forscher einen Terahertz-Puls auf die Keramik gesendet und gemessen, wie gut dieser reflektiert wird. Anhand des Reflexionsvermögens lässt sich feststellen, ob der Punkt, an dem der Laser auftraf, supraleitend geworden ist. Tatsächlich war dies der Fall.


Originalveröffentlichung
D. Fausti, R.I. Tobey, N. Dean, S. Kaiser, A. Dienst, M.C. Hoffmann, S. Pyon, T. Takayama, H. Takagi, A. Cavalleri
Light-induced Superconductivity in a Stripe-ordered Cuprate
Science, 14. Januar 2011

Ansprechpartner:
Prof. Andrea Cavalleri
Max-Planck-Forschungsgruppe Strukturelle Dynamik
Center of Free-Electron Laser Science
E-Mail: andrea.cavalleri@mpsd.cfel.de


*


Quelle:
MPG - Presseinformation vom 13. Januar 2011
Herausgeber:
Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Referat für Presse- und Öffentlichkeitsarbeit
Hofgartenstraße 8, 80539 München
Tel.: 089/21 08-0, Fax: 089/21 08-12 76
E-Mail: presse@gv.mpg.de
Internet: www.mpg.de


veröffentlicht im Schattenblick zum 15. Januar 2011