Schattenblick → INFOPOOL → NATURWISSENSCHAFTEN → TECHNIK


WERKSTOFFE/903: Dünnschicht-Solarzellen - Wie Defekte entstehen und verschwinden (idw)


Helmholtz-Zentrum Berlin für Materialien und Energie GmbH - 22.04.2016

Dünnschicht-Solarzellen: Wie Defekte in CIGSe-Zellen entstehen und verschwinden

Kupferanteil spielt entscheidende Rolle


Eine internationale Kollaboration aus deutschen, israelischen und britischen Teams hat die Abscheidung von einzelnen Chalkopyrit-Dünnschichten untersucht. An der Röntgenquelle BESSY II des Helmholtz-Zentrums Berlin konnten sie beobachten, wann sich während der Deposition bestimmte Defekte bilden und unter welchen Umständen sie ausheilen. Die Ergebnisse geben Hinweise für die Optimierung der Herstellungsprozesse und sind nun in Energy & Environmental Science publiziert.


Unter den polykristallinen Dünnschicht-Solarzelltypen erreichen CIGSe-Solarzellen die höchsten Wirkungsgrade. CIGSe steht für Kupfer, Indium, Gallium und Selen, die vier Elemente werden über Dampfphasen zusammen abgeschieden, so dass sie in Form von winzigen Chalkopyrit-Kristallen auf einem Substrat eine sehr dünne Schicht bilden. Dies ist ein überaus komplexer Prozess, der von vielen Parametern gesteuert wird. Daher erreichen CIGSe-Module in industrieüblichen Formaten noch nicht die Rekordwirkungsgrade, die bereits im Labormaßstab demonstriert werden. Eine Ursache: im Verlauf der Herstellung können sich Defekte ausbilden, die den Wirkungsgrad reduzieren. Eine Kollaboration aus deutschen, israelischen und britischen Teams hat nun eingehend untersucht, wie der Herstellungsweg die Qualität der Mikrostruktur beeinflusst. An der Röntgenquelle BESSY II konnten sie erstmals mit in situ Röntgendiffraktion und Fluoreszenzanalyse beobachten, wann sich während der Deposition Defekte bilden und unter welchen Umständen sie ausheilen.


Zusätzliches Kupfer hilft beim Ausheilen der Defekte

Das Abscheiden von dünnen CIGSe-Filmen ist ein komplexer Prozess: Zunächst werden Indium, Gallium und Selen auf dem Substrat deponiert. Im zweiten Schritt folgt die Deposition von Kupfer- und Selenatomen, die in die In-Ga-Se-Schicht einwandern. Dort entstehen winzige CIGSe-Kristallite mit Chalkopyrit-sStruktur. Der Kupferanteil erreicht erst im Lauf des zweiten Schritts das richtige Maß. Die "kupferarme" Phase davor ist durch zahlreiche Defekte innerhalb der Kristallite gekennzeichnet. Durch die Zugabe von Kupfer und Selen verschwinden diese Defekte zunehmend. Wird auch nach dem Erreichen der "richtigen Stöchiometrie" noch Kupfer und Selen zugegeben, dann passen diese Elemente nicht mehr in die vorhandenen Kristallmatrizen hinein und lagern sich in und auf der polykristallinen CIGSe-Schicht als "Körner" ab. Eigentlich ist dies lästig, denn die Körner müssen im Anschluss wieder aufwändig entfernt werden. Doch offenbar haben sie eine wichtige Funktion für das fast vollständige Verschwinden der Defekte. Dies zeigt nun die vorliegende Arbeit.


Strukturen und Elemente in Echtzeit während des Aufwachsens analysiert

Dr. Roland Mainz und seine Kollegen vom HZB konnten an der EDDI-Beamline von BESSY II mit Röntgendiffraktion die Strukturveränderungen während der Deposition beobachten. Und zwar in Echtzeit. Dabei analysierten sie mit Röntgenfluoreszenzanalyse die elementare Zusammensetzung der entstandenen Dünnschicht. Die gleichzeitige Beobachtung mit zwei Methoden ermöglichte ihnen einen neuen Einblick: "Die Vernichtung der Defekte erfolgt sehr schnell, sobald sich Kupferselen-Körner an der Oberfläche des CIGSe-Filmes ablagern und wir in die kupferreiche Phase eintreten. Bisher haben wir die kupferreiche Phase nur als wichtig für das Wachsen der Körner verstanden, nun wissen wir, dass sie auch eine große Rolle beim Abbau der Defekte spielt", erklärt Roland Mainz.


Abscheidungsprozesse für hochqualitative CIGSe-Filme verbessern

Helena Stange, Ko-Autorin der Studie, hat den Einfluss der verschiedenen Defekttypen auf die Diffraktionssignale simuliert. Die In-Situ-Beobachtungen passen sehr gut zu den Simulationen und zu den Ergebnissen, die aus den unterschiedlichen bildgebenden Verfahren entstanden sind, mit denen Teams am Max-Planck-Institut für Festkörperforschung in Stuttgart, am SuperSTEM Lab in Daresbury, England oder am Racah Institut, Jerusalem, die Proben in verschiedenen Stadien der Deposition untersucht hatten.


Temperatur eher unkritisch

Ein weiteres wichtiges Ergebnis ist, dass die Temperatur während der Deposition ein verhältnismäßig unkritischer Parameter für den Defektabbau ist: Ob der Vorgang bei 400 Grad Celsius oder 530 Grad stattfindet, ist unerheblich, sobald die Schicht kupferreich wird. Auch diese Einsicht hilft dabei, Verfahren für die großflächige Deposition zu optimieren: anstatt viel Aufwand auf eine möglichst homogene Temperatur über die gesamte Fläche zu verwenden, sollte man besser andere Parameter perfektionieren.

Die Ergebnisse sind in Energy & Environmental ScienceEnergy & Environmental Science publiziert: "Annihilation of structural defects in chalcogenide absorber films for high-efficiency solar cells"
DOI: 10.1039/C6EE00402D

Die Kooperation läuft im Rahmen des Helmholtz-Virtuellen Instituts "Microstructures control for thin film solarcells", das von 2012 bis 2018 gefördert wird.


Weitere Informationen unter:
http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14437&sprache=de&typoid=5272
http://pubs.rsc.org/en/Content/ArticleLanding/2016/EE/C6EE00402D#!divAbstract

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution111

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH,
Dr. Ina Helms, 22.04.2016
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 26. April 2016

Zur Tagesausgabe / Zum Seitenanfang