Schattenblick → INFOPOOL → NATURWISSENSCHAFTEN → TECHNIK


WERKSTOFFE/914: Glasbildung durch amorphe Ordnung (idw)


Universität Augsburg - 09.06.2016

Glasbildung durch amorphe Ordnung


In einem soeben erschienenen Beitrag im führenden naturwissenschaftlichen Fachjournal Science lösen Forscher der Universitäten Augsburg und Paris einen lang anhaltenden Streit über die wahre Natur des Übergangs von der Flüssigkeit in das feste Glas und bestätigen die Theorie, wonach es sich um einen - wenngleich unkonventionellen - Phasenübergang handelt.


Augsburg/Paris/AL/PL/KPP - Obwohl Gläser zu den ältesten vom Menschen genutzten Materialien gehören, sind die molekularen Vorgänge beim Übergang von der Flüssigkeit in das feste Glas noch weitgehend unverstanden. In ihrem soeben in "Science" erschienenen Beitrag "Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers" lösen nun die Arbeitsgruppen von Prof. Dr. Alois Loidl und PD Dr. Peter Lunkenheimer (beide Universität Augsburg) zusammen mit Kollegen aus Paris eine alte Streitfrage: Glas ist nicht einfach eine "eingefrorene" Flüssigkeit, die bei Abkühlung immer zäher wird, Glas entsteht vielmehr durch einen sogenannten thermodynamischen Phasenübergang, was bedeutet: Das Abkühlen der Glasschmelze geht einher mit einer zunehmend gemeinsamen ("kooperativen") Bewegung, was schließlich zu sogenannter amorpher Ordnung und damit zur Erstarrung führt. Den Nachweis dieses Molekülverhaltens konnten die Wissenschaftler aus Augsburg und Paris dadurch erbringen, dass es ihnen gelungen ist, die Reaktion glasbildender Flüssigkeiten auf ultrastarke elektrische Wechselfelder mit bisher nicht erreichter Präzision zu messen.


Eine alte Kontroverse

Gläser haben eine immense technologische Bedeutung und sind nahezu allgegenwärtig in unserem täglichen Leben - von klassischen Anwendungsfeldern wie Fenstern oder Behältern bis hin zu Glasfasern zur optischen Datenübertragung oder zu neuartigen Elektrolytmaterialien in Akkumulatoren oder Brennstoffzellen. Auch die große Gruppe der Polymere oder Metallische Gläser - neuartige Materialien mit gegenüber herkömmlichen Metallen weit überlegenen Werkstoffeigenschaften - gehören physikalisch zur Gruppe der Gläser.

In den meisten Fällen werden Gläser durch einfaches Abkühlen aus der Schmelze hergestellt. Im Gegensatz zu anderen Flüssigkeiten erstarren Glasschmelzen aber nicht schlagartig, was typisch für einen sogenannten Phasenübergang wäre, sondern kontinuierlich. Diese langsame Änderung der Viskosität wird seit Jahrhunderten von Glasbläsern bei der Herstellung von Glasobjekten genutzt, sie spielt darüber hinaus z. B. auch bei der Verarbeitung vieler Kunststoffe eine wichtige Rolle.


Ein rein dynamisches Phänomen oder ein Phasenübergang?

Konventionelle Fest-flüssig-Phasenübergänge sind theoretisch gut verstanden und erklärt, ganz im Gegensatz zum Glasübergang, dessen Ursache seit langem kontrovers diskutiert wird: Aufgrund der erwähnten Besonderheit der Glasbildung, des nicht-schlagartigen Erstarrens also, wird dieser Flüssig-fest-Übergang von einigen theoretischen Physikern als ein von Phasenübergängen grundsätzlich zu unterscheidendes, rein dynamisches Phänomen betrachtet, bei dem die Molekülbewegung bei tiefen Temperaturen kontinuierlich zum Erliegen kommt. Glas erscheint in dieser Theorie also einfach als Flüssigkeit mit extrem hoher Viskosität. Eine andere theoretische Sichtweise erklärt den Glasübergang aber durchaus auf der Basis eines, wenn auch unkonventionellen, Phasenübergangs, der letztlich zu sogenannter "amorpher Ordnung" führt, wobei die Moleküle in zwar ungeordneten, aber wohldefinierten Positionen einfrieren.


Der Glasübergang - ein Phasenübergang, wenngleich ein unkonventioneller

Der meist beobachtete instantane, also schlagartige Übergang von einer Flüssigkeit in den kristallinen Festkörper geht einher mit einer für einen Phasenübergang typischen Zunahme der Kooperativität der wechselwirkenden Atome oder Moleküle. Durch hochpräzise Experimente bei Spannungen bis zu einigen 1000 V an unterschiedlichen glasbildenden Flüssigkeiten ist es den Physikern an der Universität Augsburg in Zusammenarbeit mit ihren französischen Kollegen François Ladieu und Giulio Biroli (beide Université Paris-Saclay) und Jean-Philippe Bouchaud (Capital Fund Management, Paris) nun gelungen, eine solche phasenübergangstypische Veränderung der Kooperativität der wechselwirkenden Moleküle auch bei der Glasbildung nachzuweisen. In diesen Experimenten wurde die fünfte Oberwelle eines angelegten Wechselfeldes bei der glasigen Erstarrung detektiert, und daraus ließ sich die wachsende Zahl sich kooperativ bewegender Moleküle bestimmen. "Unser experimenteller Befund favorisiert also deutlich theoretische Modelle, die den Glasübergang als Phasenübergang beschreiben", so Alois Loidl.


Dreidimensionale statt fraktaler Molekülregionen

Bei thermodynamischen Phasenübergängen erwartet man theoretisch "fraktale Dimensionen" der kooperativen Molekülregionen, will heißen: Man erwartet, dass diese Regionen geometrische Objekte mit einer Dimension sind, die kleiner ist als die des Raumes. Überraschenderweise fanden die Augsburger und Pariser Physiker nun allerdings, dass sich am Glasübergang durchaus dreidimensionale, also nicht-fraktale Molekülregionen ausbilden. Dies bestätigt Vorhersagen der an diesem Projekt beteiligten theoretischen Physiker Biroli und Bouchaud über die unkonventionelle Natur des der Glaserstarrung zugrundeliegenden Phasenübergangs.

"Wir haben ein Phänomen, das seit Jahrtausenden auf empirischer Basis genutzt wird, aber bisher nicht wirklich verstanden war, nun auf mikroskopischer Ebene entschlüsselt", resümiert Lunkenheimer und ist sich sicher, dass dies entscheidend zu einem tieferen Verständnis von so unterschiedlichen Materialien wie Silikatgläsern, Polymeren, metallischen Gläsern und sogar von diversen Arten biologischer Materie beitragen werde.

Die Untersuchungen des Glasübergangs am Zentrum für Elektronische Korrelationen und Magnetismus des Instituts für Physik der Universität Augsburg werden im Rahmen der von der Deutschen Forschungsgemeinschaft (DFG) finanzierten Forschergruppe "Nonlinear response to probe vitrification" durchgeführt.


Originalbeitrag:
S. Albert, Th. Bauer, M. Michl, G. Biroli, J.-P. Bouchaud, A. Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet, F. Ladieu:
"Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass- formers".
Science, 10 Juni 2016,
http://dx.doi.org/10.1126/science.aaf3182


Weitere Informationen unter:
http://dx.doi.org/ 10.1126/science.aaf3182
http://www.physik.uni-augsburg.de/lehrstuehle/exp5/

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution58

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Universität Augsburg, Klaus P. Prem, 09.06.2016
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 14. Juni 2016

Zur Tagesausgabe / Zum Seitenanfang